جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز
|
|
- Φωτινή Κορωναίος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 تي وري اطلاعات کوانتومی ترم پاییز مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی داریم که در اینجا بیان می کنیم. در این جلسه از + R براي اشاره به اعداد حقیقی نامنفی (شامل صفر) استفاده می کنیم. یادآوري می کنیم که براي هر ماتریس هرمیتی A و تابع دلخواه f : R R عملگر f(a) این گونه تعریف می شود: اگر A = λ v v قطري شدن A در یک پایه متعامد یکه باشد آنگاه قرار می دهیم f(a) = f(λ ) v v. همچنین نامساوي جنسن 1 را نیز یادآوري می کنیم: n باشد داریم: نامساوي جنسن: اگر f : R R تابعی محدب و 0 =1 p = 1 p ( n n ) p f(x ) f p x. =1 =1 1 نامساویهایی در مورد اثر ماتریس ها قضیه 1 نامساوي کلین : 2 اگر f : R R تابعی محدب باشد و A و B عملگرهاي هرمیتی باشند داریم: tr[f(a) f(b)] tr[(a B)f (B)] (1) بعلاوه اگر f اکیدا محدب باشد تساوي تنها زمانی برقرار است که A = B باشد. اثبات: ابتدا حالت خاصی که ماتریس هاي A و B یک بعدي (یعنی یک عدد باشند) را در نظر بگیرید. آنوقت رابطه بالا را می توان به شکل زیر نوشت: اما با استفاده از قضیه مقدار میانگین داریم: 1 Jensen nequalty 2 Klen nequalty f(a) f(b) (a b)f (b). f(a) f(b) (a b) f (η), η [a, b] (2) 1
2 (a b) f (η) (a b)f (b). پس باید ثابت کنیم که دو حالت در نظر می گیریم: a b و a. < b در حالت اول باید نشان دهیم (b) f (η) f که بدلیل اینکه (t) f تابعی صعودي است برقرار می باشد. اثبات حالت دوم مشابه است. حال حالت ماتریسی نامساوي را در نظر می گیریم. فرض کنید A = B = j λ v v γ j ω j ω j در این صورت f(a) = f(b) = j f (B) = j Bf (B) = j f(λ ) v v, f(γ j ) ω j ω j, f (γ j ) ω j ω j, γ j f (γ j ) ω j ω j. در نتیجه tr[f(a) f(b)] = tr[f(a)] tr[f(b)] = f(λ ) j f(γ j ) و همچنین داریم: tr[(a B)f (B)] = tr[af (B)] tr[bf (B)] = tr[af (B)] j γ j f (γ j ). جهت محاسبه [(B) tr[af داریم: 2
3 tr[af (B)] = tr [( λ v v )( f (γ j ) ω j ω j )] = tr [ λ f (γ j ) v v ω j ω j ] =,j,j λ f (γ j )tr [ v v ω j ω j ] j =,j =,j λ f (γ j )tr [ v ω j ω j v ] λ f (γ j ) v ω j 2 اما توجه کنید که از متعامد یکه بودن پایه هاي { v } و { j ω } نتیجه می شود: 3 v ω j 2 = 1, j; v ω j 2 = 1,. j بنابراین tr[f(a) f(b)] = [f(λ ) f(γ j )] =,j [f(λ ) v ω j 2 f(γ j ) v ω j 2 ] =,j v ω j 2 [f(λ ) f(γ j )]. به طور مشابه tr[bf (B)] = =,j γ j f (γ j ). γ j f (γ j ) v ω j 2. v ω j 2 [f(λ ) f(γ j )],j,j v ω j 2 [λ f (γ j ) γ j f (γ j )] بنابراین کافی است ثابت کنیم v ω j 2 = 3 این رابطه درست است زیرا v ω j ω j v = tr[ v ω j ω j v ] = tr[ v v ω j ω j ] = tr( [ v v ] ω j ω j ) = tr(i ω j ω j ) = 1. 3
4 ,j ] v ω j [f(λ 2 ) f(γ j ) (λ γ j )f (γ j ) 0 یا به عبارت دیگر که نامساوي اي درست است زیرا عبارت داخل پرانتز نامنفی است (این همان حالت اسکالر نامساوي است). قضیه 2 نامساوي پیرل : 4 اگر f تابعی محدب باشد و A عملگر هرمیتی باشد داریم: براي هر بردار e به طول واحد e f(a) e f( e A e ). (3) tr[f(a)] براي هر پایه متعامد یکه { e } n f( e A e ). (4) =1 اثبات: کافی است که قسمت اول قضیه را ثابت کنیم زیرا قسمت اول قسمت دوم را نتیجه می دهد: n n tr[f(a)] = e f(a) e f( e A e ). =1 =1 براي اثبات قسمت اول با توجه به هرمیتی بودن A داریم: A = λ v v f(a) = f(λ ) v v. در نتیجه e f(a) e = e f(λ ) v v e = = f(λ ) e v v e f(λ ) e v 2. از طرفی با استدلال مشابهی که در زیرنویس 3 داشتیم داریم: = 1 2 e v. حال با استفاده از نامساوي جنسن: f(λ ) e v 2 f( λ e v 2 ) =f( λ e v v e ) =f( e [ λ v v ] e ) =f( e A e ). 4 Peerl nequalty 4
5 2 نامساوي هاي عملگري در اینجا به معرفی توابع عملگر صعودي 5 و توابع عملگر محدب 6 می پردازیم. تعریف 3 تابع f : R + R را عملگر صعودي گویند هرگاه براي هر دو عملگر مثبت نیمه معین A و B رابطه زیر برقرار باشد: A B f(a) f(b). در رابطه بالا A B بدین معنی است که عملگر B A مثبت نیمه معین است. توجه کنید که دامنه تابع f اعداد حقیقی نامنفی است و آن را روي ماتریس هاي مثبت نیمه معین B A اعمال کرده ایم. تعریف 4 تابع f : R + R را عملگر محدب گویند هرگاه براي هر دو عملگر A و B رابطه زیر برقرار باشد: f(pa + (1 p)b) pf(a) + (1 p)f(b), p [0, 1], و تابع f را عملگر مقعر گویند هرگاه تابع f عملگر محدب باشد. توجه: دقت کنید که توابع عملگر صعودي همواره یکنوا هستند اما برعکس آن لزوما برقرار نیست. بدین معنی که ممکن است تابعی یکنوا باشد اما عملگر صعودي نباشد. یکی از این توابع تابع f(t) = t 2 است. همچنین تابع f(t) = e t که هم یکنوا است و هم محدب اما نه عملگر صعودي است نه عملگر محدب. خواص توابع عملگر صعودي: 1. اگر f(t) عملگر صعودي باشد آنگاه براي 0 c h(t) = f(t) + c نیز عملگر صعودي است. این خاصیت برقرار است زیرا h(a) = f(a) + ci, h(b) = f(b) + ci که I عملگر همانی است. A B f(a) f(b) f(a) + ci f(b) + ci h(a) h(b) 2. اگر f(t) عملگر صعودي باشد آنگاه براي 0 c h(t) = f(t) + ct نیز عملگر صعودي است. این خاصیت برقرار است زیرا. h(a) = f(a) + ca, h(b) = f(b) + cb.3 اگر g(t) f(t), توابعی عملگر صعودي باشد و 0 β α, آنگاه βg(t) h(t) = αf(t) + نیز عملگر صعودي است. این خاصیت نتیجه می دهد که مجموعه توابع عملگر صعودي یک مخروط 7 در فضاي توابع تشکیل می دهد. mt 1 f(t) = براي هر 0 m نیز عملگر صعودي است. در نتیجه با استفاده از خاصیت m+t می توان نشان داد که تابع آخر می توان ترکیب خطی توابع بالا به ازاي m -هاي مختلف را هم در نظر گرفت. نکته ي جالب اینکه هر تابع عملگر صعودي حتما قابل بیان به صورت ترکیب خطی توابع بالا و توابع ثابت و خطی است. البته چون تعداد این توابع بینهایت است بجاي ترکیب خطی از انتگرال وزن دار در محاسبه ترکیب خطی استفاده می شود. 5 Operator monotone 6 Operator convex 7 Cone 5
6 عملگر صعودي عملگر محدب a + bt, a R, b 0 a + bt + ct 2, a, b R, c 0 t p, p [0, 1] t p, p [1, 2] t p, p [ 1, 0] t p, p [ 1, 0] log t log t t log t t log t t 1 t t+m, m 0 t 2 t+m, m, tan t, t ( π 2, π 2 ) عملگر صعودي f : R+ R + 1 اگر f(t) جدول 1: تعدادي از توابع عملگر صعودي و عملگر محدب قضیه 5 (قضیه لونر) 8 تابع f : R + R عملگر صعودي است اگر و تنها اگر وجود داشته باشند تابع نامنفی µ(m) mt 1 f(t) = c + dt + 0 m + t µ(m)dm. و اعداد 0 d و c R به طوري که مشابها قضیه زیر را در مورد توابع عملگر محدب داریم: قضیه 6 تابع f : R + R عملگر محدب است اگر و تنها اگر وجود داشته باشند تابع نامنفی µ(m) و اعداد 0 e و f(t) = c + dt + et 2 mt m + t µ(m)dm. c, d R به طوري که از روي ف رم انتگرالی توابع عملگر صعودي و عملگر محدب به نظر می رسد رابطه اي بین این دو نوع تابع وجود دارد. قضیه 7 در صورتی که برد تابع f اعداد حقیقی نامنفی باشد ) + R f) : R + تابع f عملگر مقعر است اگر و تنها اگر عملگر صعودي باشد. یعنی مجموعه توابع عملگر مقعر و صعودي با برد اعداد حقیقی نامنفی یکسان هستند. بصورت خاص تابع ln(t) f(t) = و ln(t) f(t) = t توابعی عملگر محدب هستند که این تابع آخر در نظریه اطلاعات کوانتمی کاربرد زیادي دارد. در جدول 1 تعدادي از توابع عملگر صعودي و عملگر محدب لیست شده اند. 8 Löwner s theorem 6
جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از
جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:
نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.
جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.
محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک
جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز
نظریه اطلاعات کوانتمی ترم پاییز 392-39 مدرس: ابوالفتح بیگی و امین راده گوهري نویسنده: علی ایزدي راد جلسه 23 تابع آنتروپی و خاصیت مقعر بودن در جلسه ي قبل به تعریف توابع محدب و صعودي پرداختیم و قضیه هاي
جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان
جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال
نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه
جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.
تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات
محاسبه ی برآیند بردارها به روش تحلیلی
محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور
جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز
نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت
جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1
محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به
هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min
مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0
مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله
جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه
نظریه اطلاعات کوانتمی 1 ترم پاییز 1392-1391 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: مرتضی نوشاد جلسه 28 1 تقطیر و ترقیق درهم تنیدگی ψ m بین آذر و بابک به اشتراك گذاشته شده است. آذر و AB فرض کنید
جلسه ی ۱۰: الگوریتم مرتب سازی سریع
دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع
جلسه ی ۴: تحلیل مجانبی الگوریتم ها
دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا
روش محاسبه ی توان منابع جریان و منابع ولتاژ
روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این
جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان
هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر
آزمایش 8: تقویت کننده عملیاتی 2
آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده
تحلیل الگوریتم پیدا کردن ماکزیمم
تحلیل الگوریتم پیدا کردن ماکزیمم امید اعتصامی پژوهشگاه دانشهاي بنیادي پژوهشکده ریاضیات 1 انگیزه در تحلیل الگوریتم ها تحلیل احتمالاتی الگوریتم ها روشی براي تخمین پیچیدگی محاسباتی یک الگوریتم یا مساله ي
تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢
دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم
محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است.
محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه 1 محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل
مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A
تحلیل مدار به روش جریان حلقه
تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در
معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:
شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x
جلسه ی ۵: حل روابط بازگشتی
دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات
سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara
1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }
هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف
مدار معادل تونن و نورتن
مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی
هندسه تحلیلی بردارها در فضای R
هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد
تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد:
تخمین با معیار مربع خطا: هدف: با مشاهده X Y را حدس بزنیم. :y X: مکان هواپیما مثال: مشاهده نقطه ( مجموعه نقاط کنارهم ) روی رادار - فرض کنیم می دانیم توزیع احتمال X به چه صورت است. حالت صفر: بدون مشاهده
باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g
تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی
دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم
آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر
Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: Chi-Tsong Chen, Linear System Theory and Design, 1999.
DVNCED CONTROL l Karmpour ssoca Prossor Frdows Uvrsy o Mashhad Rrc: Ch-Tsog Ch, Lar Sysm Thory ad Dsg, 999. Lcur lcur Basc Ida o Lar lgbra-par II Topcs o b covrd clud: Fucos o Squar Marx. Lyapuov Equao.
CD = AB, BC = ٢DA, BCD = ٣٠ الاضلاع است.
1.چهار مثلث چوبی مساوي با اضلاع 3 و 4 و 5 داریم. با استفاده از این چهار مثلث چه تعداد چندضلعی محدب می توان ساخت نیازي به اثبات نیست و تنها کافی است چندضلعی هاي موردنظر را رسم کنید. چندضلعی محدب به چندضلعی
دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال
دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته
جلسه ی ۲۴: ماشین تورینگ
دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)
قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :
۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه
تصاویر استریوگرافی.
هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی
Angle Resolved Photoemission Spectroscopy (ARPES)
Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند
تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.
مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از
مینامند یا میگویند α یک صفر تابع
1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله
ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد
دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها
جلسه ی ۳: نزدیک ترین زوج نقاط
دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم
دبیرستان غیر دولتی موحد
دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط
آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك
آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت
نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا
به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم
آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(
آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه
فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn
درس»ریشه ام و توان گویا«تاکنون با مفهوم توان های صحیح اعداد و چگونگی کاربرد آنها در ریشه گیری دوم و سوم اعداد آشنا شده اید. فعالیت زیر به شما کمک می کند تا ضمن مرور آنچه تاکنون در خصوص اعداد توان دار و
همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین
همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین دو صفت متغیر x و y رابطه و همبستگی وجود دارد یا خیر و آیا می توان یک مدل ریاضی و یک رابطه
1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی
فصل او ل 1 دایره هندسه در ساخت استحکامات دفاعی قلعهها و برج و باروها از دیرباز کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم به»قضیۀ همپیرامونی«میگوید در بین همۀ شکلهای هندسی بسته با محیط ثابت
فصل 5 :اصل گسترش و اعداد فازی
فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع
عنوان: رمزگذاري جستجوپذیر متقارن پویا
دانشگاه صنعتی شریف دانشکده مهندسی برق گزارش درس ریاضیات رمزنگاري عنوان: رمزگذاري جستجوپذیر متقارن پویا استاد درس: مهندس نگارنده: ز 94 دي ماه 1394 1 5 نماد گذاري و تعریف مسي له 1 6 رمزگذاري جستجوپذیر متقارن
هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله
آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده
بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd
بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت
ثابت. Clausius - Clapeyran 1
جدول 15 فشار بخار چند مایع خالص در دمای 25 C فشار بخار در دمایC (atm) 25 نام مایع 0/7 دیاتیل اتر 0/3 برم 0/08 اتانول 0/03 آب دمای جوش یک مایع برابر است با دمایی که فشار بخار تعادلی آن مایع با فشار اتمسفر
شاخصهای پراکندگی دامنهی تغییرات:
شاخصهای پراکندگی شاخصهای پراکندگی بیانگر میزان پراکندگی دادههای آماری میباشند. مهمترین شاخصهای پراکندگی عبارتند از: دامنهی تغییرات واریانس انحراف معیار و ضریب تغییرات. دامنهی تغییرات: اختالف بزرگترین و
هندسه تحلیلی و جبر خطی ( خط و صفحه )
هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی
فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت
فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار بماند ولی در فیدبک مثبت هدف فقط باال بردن بهره است در
فصل پنجم زبان های فارغ از متن
فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*
:موس لصف یسدنه یاه لکش رد یلوط طباور
فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی
7- روش تقریب میانگین نمونه< سر فصل مطالب
1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 7 روش تقریب میانگین نمونه Sample Average Approximation 7- روش تقریب میانگین نمونه< سر فصل مطالب 2 شماره عنوان فصل 1-7 معرفی 2-7 تقریب 3-7
به نام ستاره آفرین قضیه ویریال جنبشی کل ذرات یک سیستم پایدار مقید به نیرو های پایستار را به متوسط انرژی پتانسیل کل شان
به نام ستاره آفرین قضیه ویریال درود بر ملت نجومی! در این درس نامه می خواهیم یکی از قضیه های معروف اخترفیزیک و مکانیک یعنی قضیه ی شریفه ی ویریال را به دست آوریم. به طور خالصه قضیه ی ویریال متوسط انرژی جنبشی
خالصه درس: نویسنده:مینا سلیمان گندمی و هاجر کشاورز امید ریاضی شرطی. استقالل متغیر های تصادفی پیوسته x و y استقالل و امید ریاضی
به نام خدا آمار و احتمال مهندسی هفته 21 نیمسال اول ۴9-۴9 مدرس: دکتر پرورش ۴9/24/49 نویسنده:مینا سلیمان گندمی و هاجر کشاورز خالصه درس: امید ریاضی شرطی استقالل متغیر های تصادفی پیوسته x و y استقالل و امید
ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی
ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه
می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.
تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل
پروژه یازدهم: ماشین هاي بردار پشتیبان
پروژه یازدهم: ماشین هاي بردار پشتیبان 1 عموما براي مسایلی که در آنها دو دسته وجود دارد استفاده میشوند اما ماشین هاي بردار پشتیبان روشهاي متفاوتی براي ترکیب چند SVM و ایجاد یک الگوریتم دستهبندي چند کلاس
جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی
دانشکده ی علوم ریاضی ساختمان داده ۱۰ ا ذر ۹۲ جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی مدر س: دکتر شهرام خزاي ی نگارنده: معین زمانی و ا رمیتا اردشیری ۱ یادا وری همان طور که درجلسات پیش مطرح
برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A
مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I
تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر
تئوری رفتار مصرف کننده : می گیریم برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر فرض اول: مصرف کننده یک مصرف کننده منطقی است یعنی دارای رفتار عقالیی می باشد به عبارت دیگر از مصرف کاالها
ˆ ˆ ˆ. r A. Axyz ( ) ( Axyz. r r r ( )
دینامیک و ارتعاشات ad ad ω x, ω y 6, ω z s s ωω ˆ ˆ ˆ ˆ y j+ω z k 6j+ k A xx x ˆ yy y ˆ zz z ˆ H I ω i+ I ω j+ I ω k, ω x HA Iyyω y ˆ i+ Izz ωz k ˆ Ωω y ĵ پاسخ تشریحی توسط: استاد مسیح لقمانی A گزینه درست
تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب
تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر
فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22
فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................
فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی
فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی در رساناها مانند یک سیم مسی الکترون های آزاد وجود دارند که با سرعت های متفاوت بطور کاتوره ای)بی نظم(در حال حرکت هستند بطوریکه بار خالص گذرنده
فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(
فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................
آموزش SPSS مقدماتی و پیشرفته مدیریت آمار و فناوری اطالعات -
آموزش SPSS مقدماتی و پیشرفته تهیه و تنظیم: فرزانه صانعی مدیریت آمار و فناوری اطالعات - مهرماه 96 بخش سوم: مراحل تحلیل آماری تحلیل داده ها به روش پارامتری بررسی نرمال بودن توزیع داده ها قضیه حد مرکزی جدول
آشنایی با پدیده ماره (moiré)
فلا) ب) آشنایی با پدیده ماره (moiré) توری جذبی- هرگاه روی ورقه شفافی چون طلق تعداد زیادی نوارهای خطی کدر هم پهنا به موازات یکدیگر و به فاصله های مساوی از هم رسم کنیم یک توری خطی جذبی به وجود می آید شکل
مود لصف یسدنه یاه لیدبت
فصل دوم 2 تبدیلهای هندسی 1 درس او ل تبدیل های هندسی در بسیاری از مناظر زندگی روزمره نظیر طراحی پارچه نقش فرش کاشی کاری گچ بری و... شکل های مختلف طبق الگویی خاص تکرار می شوند. در این فصل وضعیت های مختلفی
به نام حضرت دوست. Downloaded from: درسنامه
به نام حضرت دوست درسنامه کروی هندسه گردآوری: و تهی ه معتمدی ارسالن اصالح: سی د و بازبینی امیر سادات موسوی سالم دوستان همان طور که می دانیم نجوم کروی یکی از بخش های مهم المپیاد نجوم است. این علم شامل دو
Delaunay Triangulations محیا بهلولی پاییز 93
محیا بهلولی پاییز 93 1 Introduction در فصل های قبلی نقشه های زمین را به طور ضمنی بدون برجستگی در نظر گرفتیم. واقعیت این گونه نیست. 2 Introduction :Terrain یک سطح دوبعدی در فضای سه بعدی با یک ویژگی خاص
2/13/2015 حمیدرضا پوررضا H.R. POURREZA 2 آخرین گام در ساخت یک سیستم ارزیابی آن است
1 ارزیا ی م حمیدرضا پوررضا قد 2 آخرین گام در ساخت یک سیستم ارزیابی آن است 1 ف ی ا ط لاحات 3 :Degrees of Freedom (DOF) این اصطلاح در سیستمهاي ردیاب استفاده میشود و بنابه تعریف عبارتست از آزادي حرکت انتقالی
ک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري
ک ت اب درس ی ن ظ ری ه گ راف ب الاک ری ش ن ان و ران گ ان ات ه ان (ح ل ت ع دادي از ت م ری ن ه اي ف ص ل ه اي 4 و 5) دک ت ر ب ی ژن ط اي ري دان ش ک ده ي ع ل وم ری اض ی دان ش گ اه ص ن ع ت ی اص ف ه ان Copyright
ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ
دستوركارآزمايش ميز نيرو هدف آزمايش: تعيين برآيند نيروها و بررسي تعادل نيروها در حالت هاي مختلف وسايل آزمايش: ميز مدرج وستون مربوطه, 4 عدد كفه وزنه آلومينيومي بزرگ و قلاب با نخ 35 سانتي, 4 عدد قرقره و پايه
هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه
آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست
عنوان مقاله "نقاط تنها تنها مانده اند"
بسمه تعالی عنوان مقاله "نقاط تنها تنها مانده اند" )بررسی چالش های موجود در تعاریف حد وپیوستگی در کتابهای دبیرستانی( زهرا عباسی *1 حسن رزاقیان 2 آموزش و پرورش شهرستان محمودآباد تابستان 1131 چکیده در این
نحوه سیم بندي استاتورآلترناتور
نحوه سیم بندي استاتورآلترناتور ابتدا به تعریف مختصري از استاتور و نقش آن در آترناتور می پردازیم. دینام یا آلترناتور قطعه اي الکترومکانیکی است که نیروي مکانیکی را به نیروي الکتریکی تبدیل میکند. دینام در
جلسه ی ۱۱: درخت دودویی هرم
دانشکده ی علوم ریاضی ساختمان داده ا بان جلسه ی : درخت دودویی هرم مدر س: دکتر شهرام خزاي ی نگارنده: احمدرضا رحیمی مقدمه الگوریتم مرتب سازی هرمی یکی دیگر از الگوریتم های مرتب سازی است که دارای برخی از بهترین
مجموعه های اندازه پذیر به مثابە نقاط حدی
فرهنگ و اندیشە ریاضی شماره ۵٧ (پاییز و زمستان ١٣٩۴) صص. ٩٧ تا ١٠۶ مجموعه های اندازه پذیر به مثابە نقاط حدی برگردان: رسول کاظمی جی. تاناکا و پی. اف. مک لولین ١. مقدمه دانشجویان درس آنالیز حقیقی در دورۀ
)مطالعه موردی بازار بورس تهران(
برازش مدل رگرسیون خطی چند گانه با خطاهای وابسته و داراری توزیع t چند متغیره )مطالعه موردی بازار بورس تهران اعظم غمگسار*)ارائهکننده انیس ایرانمنش*)مکاتبهکننده** امیر دانشگر anisiranmanesh@yahoo.com mr.daneshgar@gmail.comazamghamgosar@yahoo.com
فیلتر کالمن Kalman Filter
به نام خدا عنوان فیلتر کالمن Kalman Filter سیدمحمد حسینی SeyyedMohammad Hosseini Seyyedmohammad [@] iasbs.ac.ir تحصیالت تکمیلی علوم پایه زنجان Institute for Advanced Studies in Basic Sciences تابستان 95
فصل دهم: همبستگی و رگرسیون
فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری
10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ
فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.
اتصال گیردار به ستون 1-5 مقدمه 2-5- نمونه محاسبات اتصال گیردار جوشی با ورق روسري و زیر سري WPF) ( مشخصات اولیه مقاطع
فصل پنجم: اتصال گیردار به ستون 1-5 مقدمه در اتصالات صلب خمشی لنگر خمشی انتهاي تیر به صورت کامل به ستون منتقل می گردد و زاویه چرخش بین تیر و ستون در محل اتصال ثابت باقی می ماند. قاب خمشی در این ساختمان
هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط
هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را
بردارها در فضاي سه بعدي و هندسه تحلیلی فضایی 1 3 بردارها در فضاي سه بعدي دستگاه مختصات استوانه اي توابع چند متغیره 26
1 2 2 : DFLG 3 4 فهرست مطالب 1 بردارها در فضاي سه بعدي و هندسه تحلیلی فضایی 1 3 بردارها در فضاي سه بعدي.................................. 1.1 6 حاصلضرب نقطه اي در. V ۳.................................
تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد
تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد مبتنی بر روش دسترسی زلیخا سپهوند دانشکده مهندسى برق واحد نجف آباد دانشگاه آزاد اسلامى نجف آباد ایر ان zolekhasepahvand@yahoo.com روح االله
زمین شناسی ساختاری.فصل پنجم.محاسبه ضخامت و عمق الیه
پن ج م فص ل محاسبه ضخامت و عم ق الهی زمین شناسی ساختاری.کارشناسی زمین شناسی.بخش زمین شناسی دانشکده علوم.دانشگاه شهید باهنر کرمان.استاد درس:دکتر شهرام شفیعی بافتی 1 تعاریف ضخامت - فاصله عمودی بین دو صفحه
هدایت روبات موبایل توسط کنترل کننده فازي با هدف مانع گریزي و هدف گرایی در محیط هاي پیچیده آیدین تیهویی دکتر ایرج حسن زاده دانشگاه تبریز- دانشکده ي مهندسی برق E-mal: teyhooe@yahoo.com چکیده بسیاري از الگوریتم
فصل صفر یادآوری مفاهیم پایه
فصل صفر جبر اعداد حقیقی در این فصل به مرور مهم ترین مطالبی میپردازیم که در مباحث حساب دیفرانسیل و انتگرال بدان محتاج هستیم این مطالب مشتمل بر مروری مجد د بر خواص اعداد حقیقی است که دانشآموزان از دوره دبستان
مسائل. 2 = (20)2 (1.96) 2 (5) 2 = 61.5 بنابراین اندازه ی نمونه الزم باید حداقل 62=n باشد.
) مسائل مدیریت کارخانه پوشاک تصمیم دارد مطالعه ای به منظور تعیین میانگین پیشرفت کارگران کارخانه انجام دهد. اگر او در این مطالعه دقت برآورد را 5 نمره در نظر بگیرد و فرض کند مقدار انحراف معیار پیشرفت کاری
به نام خدا. الف( توضیح دهید چرا از این تکنیک استفاده میشود چرا تحلیل را روی کل سیگنال x[n] انجام نمیدهیم
پردازش گفتار به نام خدا نیمسال اول 59-59 دکتر صامتی تمرین سری سوم پیشبینی خطی و کدینگ شکلموج دانشکده مهندسی کامپیوتر زمان تحویل: 32 آبان 4259 تمرینهای تئوری: سوال 1. می دانیم که قبل از انجام تحلیل پیشبینی